A tale of two paths: Gender-based academic trajectories - an event history analysis

Presentation at the $2^{\text {nd }}$ GRANteD conference, Wien, October 20, 2023

Charlie Mom, Peter van den Besselaar, Torger Möller TMC Research Amsterdam; Vrije Universiteit Amsterdam; DZHW Berlin

Acknowledgements

We acknowledge the useful comments and recommendations from Laura Cruz-Castro (CSIC, Madrid)
Monica Gaughan (Arizona State University, Temple)
Jacques Mairesse (CREST-ENSAE, Paris; UNU-MERIT, Maastricht).
Luis Sanz Menéndez (CSIC, Madrid, Spain)

Research questions

- Is there gender bias in academic careers?
- Leaky pipeline: Do women have higher probability to leave the academic career then men?
- Glass ceiling: Do women have more difficulties (= lower probability) to become full professor?
- Do grants play a role?
- Affecting the academic career towards full professorship?
- Bias in grant decisions contribute to bias in careers?

The literature

- Increasingly including performance data
- In different ways - not always satisfactory
- Direct versus indirect (=mediated) effects of gender
- Standard for analysis: event history analysis
- Emerging experimental approaches
- Complexity: many covariates

Early versus late appointment as professor

- Different career types
- Early appointment \rightarrow research performance
- Later appointment \rightarrow based on other achievements (teaching, management)
- Duration
- If one follows the complete career, one sees how it worked in the past
- If one wants to study how it works today, the careers are only halfway
- Mechanisms may differ between periods and career types
- Our model is therefore specific

Relevant covariates

- Merit variables
- Individual preferences and choice (versus discrimination/bias)
- Disciplinary differences
- Academic age
- Career breaks
- Organizational differences (universities vs research institutes)
- National differences

Direct and indirect gender effects

Causal Model

Design and the case

- Careers of recent cohorts (PhD between 2000 and 2005)
- Able to follow 16-21 years after PhD
- NL: average moment to become full professor is 18 years after PhD
- In our sample: average 12.5 years after PhD
- Sample: all who received the PhD at one specific university
- no selectivity in participation
- Bibliometric variables:
- (i) medicine; (ii) dentistry; (iii) life \& earth sciences; (iv) natural sciences, math and computer science; (v) psychology \& movement science; (vi) economics

Data and data sources

- Independent, measured once:
- Gender (University PhD database; Dissertations)
- Cum Laude (University PhD database)
- Year of attaining PhD (University PhD database; Dissertations)
- Independent, cumulative measured per year:
- Accumulated performance (FracP; P10\%: DZHW Scopus)
- Prestigious individual career grants (NWO: website \& Narcis database; ERC: website)
- Breaks, periods of at least 3 years without publication (DZHW: Scopus)
- Academic age
- Dependent:
- Career: appointed to full professor (in NL: Narcis database; foreign: web search)
- Career: leave academia (DZHW: Scopus)

Method: Event history (survival) analysis

- Annual data -> discrete (versus continuous) time model
- Event history analysis using the logit function
- Every person/year as case (= 'longform' data)
- 'Censored' when one stops (3 years) publishing: exit from academic system
- In the next year removed from the analysis - if no later publications
- 'Censored' when appointed as full professor
- In the next year removed from the analysis

Analysis

- Step 1: Descriptive statistics
- Step 2: Descriptive analysis of leaving academia \& appointment to full professor
- Step 3: Event history analysis (EHA) for men and women separately
- Step 4: Where regression coefficients differ: test for interaction
- Step 5: A model including gender plus the significant interactions with gender
- Step 6: A series of controls
- Split the cohort into two sub-cohorts
- Keeping everyone in the analysis
- Different career length in the analysis (16 to 21 year)
- Step 7: Rerun step 3 to 6, but now predicting leaving academia

Some descriptive statistics 2000-2005 cohort

- Sample

971

- Men 558
- Women 382
- Excluded (professor before PhD) 31
- Medicine 441
- Dentistry 18
- Earth and life sciences 128
- Natural sciences, math, comp. sci. 192
- Behavioral and movement science 89
- Economics 72

Some descriptive results

- Glass ceiling (by 2022): 9.2\% of the woman and $14,7 \%$ of the men are appointed as full professor (ratio $m / w=1.6$); and men do so at a substantial younger academic age
- Leaky pipeline (after 16 years): 50% of women left (stopped publishing), versus 36.2% of the men (ratio $\mathrm{m} / \mathrm{w}=0.72$)
- Bias in awards: $1,8 \%$ of women got cum laude, and $3,9 \%$ of men
- No bias in grants (after 16 years): 5,76\% of women got an NWO career grant, and 5.73% of the men - interestingly equal

Kaplan-Meier: Remaining in academia

Appointment to fu		ofessor	
academic age	women	men	total
3	0	3	3
4	0	2	2
5	0	3	3
6	0	4	4
7	1	6	7
8	0	8	8
9	2	1	3
10	3	5	8
11	1	7	8
12	5	3	8
13	3	3	6
14	2	6	8
15	0	6	6
16	4	6	10
Total	21	63	84
percentage of cohort	5.30\%	10.94\%	8.64\%

Findings: Appointment as full professor

	B	df	Sig.	Exp(B)	95% CI LB	95% CI UB
Earth and \& life sciences (versus medical)	-.14	1	0.72	0.87	0.41	1.84
Math, comp, physical sciences	-.37	1	0.32	0.69	0.34	1.42
Psychology, movement sciences	.56	1	0.12	1.75	0.87	3.52
Economics	.79	1	0.02	2.21	1.14	4.30
PhD year	.02	1	0.76	1.02	0.89	1.18
Male (versus female)	1.06	1	0.01	2.89	1.36	6.16
Cum Laude (versus no cum laude)	-.34	1	0.42	0.71	0.31	1.63
Fractional papers*	.99	1	0.00	2.69	1.95	3.72
Total number of career grants*	.17	1	0.00	1.18	1.06	1.32
Academic age	.45	1	0.00	1.57	1.18	2.09
Academic age squared	-.02	1	0.01	0.98	0.97	0.99
Male x fractional papers*	-.69	1	0.00	0.50	0.36	0.70
Career breaks of three years	-.40	1	0.60	0.67	0.16	2.92
Male x Career breaks of three years	.10	1	0.90	1.11	0.23	5.33

Logistic regression; $\operatorname{Exp}(B)$: odds ratio; *= z-score at faculty level; Nagelkerke pseudo R $^{2}=0.147$

Interaction effect

Some conclusions

- Gender bias in careers exists
- Leaky pipeline: Women leave more often, especially in the early years - not explained by performance
- Glass ceiling: After controlling for a variety of (merit) variables, women are appointed as full professor
- less often
- later
- Performance has little effect for men, but it has for women
- Does meritocracy exist only for women?

Further work

- Other techniques for event history analysis
- For a publication: extending the period covered with a few years
- Include associate professor as in between career step
- More performance indicators
- academic independence; (cognitive) mobility; more grant types
- Survey or web search about private situation
- for practical reasons: only those that remained in science

Thanks for your attention

Comments? Questions?

